The Red Hill Valley Project Integrated Environmental Monitoring Plan

Joint Stewardship Board February 20, 2014

1

Presenters

- Kara Bunn, City of Hamilton
 - Current Project Manager for the RHVP IEMP at the City
- Jennifer DiDomenico, City of Hamilton
 - Previous Project Manager on both RHVP project and RHVP IEMP at the City
- Matt Senior, AMEC Environment & Infrastructure
 - Project Engineer for the lead consultant on the monitoring project

Presentation Outline

- 1. Purpose
- 2. Project Background
- 3. Monitoring Requirements
- 4. Monitoring Components
- 5. Reporting and Deliverables

3

Hamiltor

1. Purpose

- The intent of the presentation is to provide an overview of the Red Hill Valley Project Integrated Environmental Monitoring Plan (RHVP IEMP)
 - Origins and requirements
 - What do we monitor?
 - How do we monitor it?
 - What are the deliverables?
- A follow-up presentation will be given to the JSB in the 2nd quarter of 2014 which will focus on results

2. Project Background

- The idea of a highway through the Red Hill Valley was initially proposed in the 1950s
- Idea abandoned and resurrected many times during 1960s and 70s
- Approved by Provincial Joint Hearing board in 1985
- Provincial Cabinet approved subsidy funding to the Project in 1987
- Funding for Red Hill Valley section suspended by Province in 1990; focus on East-West Section (Linc)
- Funding restored in 1995
- Re-Design process re-initiated in 1997; focus on lessening environmental impacts

5

2. Project Background

1997 - Design Team expanded to over 24 professional disciplines:

- Air Quality Assessment
- Archaeology
- Architecture (golf course, landscape, structures)
- Built Heritage
- Community Consultation/Facilitation
- Economic Assessment
- Engineering (highway, geotechnical, municipal, stormwater, traffic, electrical, mechanical)
- Environmental Law
- Environmental Management
- Environmental Science (fisheries, fluvial-geomorphology, soil contamination, terrestrial ecology, groundwater)
- · Health effects
- Noise
- Planning (land use, environmental)

2. Project Background

• Red Hill Valley Project - more than a road!

2. Project Background

- The Red Hill Valley Project was an environmentally integrated infrastructure project with several parts including:
 - An 8 km four-lane, controlled access freeway
 - The realignment of 7 km of Red Hill Creek
 - 18 Stormwater Management (SWM) Facilities
 - A 2.9 km Combined Sewer Overflow Pipe
 - A Landscape Management Plan (trails, parks...)
- The final construction phase of the project ended in 2007 at which point the City started a multi-year environmental monitoring program to confirm the effectiveness of the new infrastructure.

3. Monitoring Requirements

Environmental compliance monitoring for the Red Hill Valley Project was required as outlined in the following documentation:

- MOE Exemption Order, 1997
- Red Hill Creek Watershed Plan, 1998
- Impact Assessment Design Process, 2003
- Master Permit Application, 2004
- Various Permitting Compliance Reports, 2004 to 2011
- Permits and Authorization specific to the respective construction contract phases (both Federal and Provincial)

11

3. Monitoring Requirements

The purpose of the Integrated Monitoring Plan is to:

- 1. Evaluate the performance of the Environmental Management System (i.e. design and mitigation techniques) constructed as part of the Red Hill Valley Project.
- 2. Provide the necessary information to adjust and/or optimize the plan recommendations through a process of Adaptive Management.

The Monitoring Plan is considered to be *integrated*, in that the intent is to assess the entirety of the environmental impacts of the project, rather than individual features of sub-disciplines

3. Monitoring Requirements

- Specific monitoring requirements vary by sub-discipline
- Length of monitoring varies, but for most tasks 5 years required
- Annual reporting
- Reporting to be provided to the Government Agency Committee (GAC) for review
 - City of Hamilton
 - Hamilton Conservation Authority (HCA)
 - Department of Fisheries and Oceans (DFO)
 - Ministry of Natural Resources (MNR)
 - Ministry of Transportation (MTO)
 - Niagara Escarpment Commission (NEC)
 - Ministry of the Environment (MOE)

13

4. Monitoring Components

- Primary Disciplines involved in RHVP IEMP
 - Groundwater
 - Surface water (Runoff and Flood Control)
 - Water Quality
 - Stream Morphology (Channel Design and Form)
 - Fisheries (Fish and Fish Habitat)
 - Terrestrial Ecology (Vegetation and Wildlife)
- AMEC is the primary consultant, with 4 sub-consultants for specific sub-disciplines
- Separate additional monitoring work conducted post-construction related to noise and air monitoring

Groundwater (1)

- Who does the monitoring?
 - Blackport and Associates
- Why do we monitor?
 - To assess potential impacts from a reduction in groundwater recharge and potential of degraded stormwater infiltrating into the groundwater system
- What do we monitor?
 - Groundwater levels, baseflow, and groundwater quality
- How do we monitor and when?
 - Groundwater Levels are read twice annually (spring and fall)
 - Water chemistry done bi-annually
 - Baseflow analysis to be completed as part of Executive Summary

- 10-year timeframe

15

4. Monitoring Components

Groundwater (2)

- Where do we monitor?
 - Two groundwater well nests one above the Escarpment and one below
 - Each nest contains three different wells at varying depths (shallow, intermediate, and deep)

4. Monitoring Components Surface Water (1)

- Who does the monitoring?
 - AMEC Environment & Infrastructure
- Why do we monitor?
 - Managing stormwater was a key component of the project; thus monitoring the effectiveness of these systems is important
- What do we monitor?
 - Water Levels and Flows within Red Hill Creek; primarily around constructed flood control facilities
 - Analysis of other related data (rainfall, CSO discharges)

17

4. Monitoring Components

Surface Water (2)

- How do we monitor and when?
 - Temporary water level gauges are installed in April and left in place until freeze-up in early December
 - Periodic downloads of data (every 2-4 weeks, after major storms)
 - In-stream velocity measurements as required to develop rating curves (in combination with cross-section surveys)
 - 5-year timeframe

Surface Water (3)

- Where do we monitor?
 - 3 Major Flood Control Facilities (2 operational) typically 3 gauges per
 - Water Level Monitoring of a Water Quality Facility
 - Water Level Monitoring of the Compensation Wetland

19

4. Monitoring Components

Water Quality

- Who does the monitoring?
 - AMEC Environment & Infrastructure
- Why do we monitor?
 - SWM Facilities were incorporated to provide water quality treatment of stormwater from the RHVP; important to ensure they are providing the intended level of treatment
- What do we monitor?
 - Water quality from SWM facilities
 - Sediment quality from SWM facilities
 - SWM Facility Inspections (condition, operation, etc.)

Water Quality (2)

- How do we monitor and when?
 - Water quality grab sampling from SWM facility inlets during significant storm events to characterize influent; 3 times per year (Spring, Summer, Fall) over 2 separate years
 - Water quality sampling from SWM facility outlets during same event (approximately 12 hours after influent sample) to enable calculation of removal efficiency
 - Coincidental in-creek water quality sampling for comparative
 - Sediment quality sampling (both forebay and main cell)
 - Sediment gradation analysis (grain size)
 - Bathymetric surveys (sediment accumulation)
 - 5-Year timeframe

21

4. Monitoring Components

Water Quality (3)

- Where do we monitor?
 - 14 total water quality SWM facilities (11 City-owned, 3 MTO-owned)
 - 2 in-creek sampling locations

Stream Morphology (1)

- Who does the monitoring?
 - Water Regime Investigations and Simulations Ltd. (WRIS - Dr. Bill Annable of the University of Waterloo)
- Why do we monitor?
 - The project involved a substantial realignment and re-design of the creek; thus it is important to monitor the form and function of the channel
- What do we monitor?
 - Form and stability of channel (both longitudinally and laterally)
 - Rates of channel erosion and deposition
 - Channel substrate material

23

4. Monitoring Components

Stream Morphology (2)

- How do we monitor and when?
 - Annual survey of the longitudinal profile of the creek to assess change
 - Annual survey of established crosssections to assess change
 - Annual substrate analyses (grain size analysis)
 - Annual photo reconnaissance and aeria monitoring
 - 5-Year timeframe
- Where do we monitor?
 - The entire length of the re-constructed portion of the creek (7.1 km)
 - 118 cross-sections for both survey and substrate analysis(some re-located over monitoring period)

Fish and Fish Habitat (1)

- Who does the monitoring?
 - C. Portt and Associates
- Why do we monitor?
 - To assess the effects of the project on fish and fish habitat
 - Have the changes in channel form (including removal of barriers) and water quality been beneficial in achieving a gain in fish production?
- What do we monitor?
 - Fish (numbers and diversity)
 - Benthic Invertebrates (small organisms within the creek bed – part of food chain)
 - Water Temperature
 - Fish passage and habitat

25

4. Monitoring Components

Fish and Fish Habitat (2)

- How do we monitor and when?
 - Annual electro fishing to get fish counts by species (number, weight, length)
 - Annual benthic invertebrate sampling (counts by species)
 - Water temperature data loggers within the creek
 - Annual inspections of potential fish barriers
 - Assessment of habitat measurements of riffles\pools
 - 5-year timeframe
- Where do we monitor?
 - The entire length of the re-constructed portion of the creek (7.1 km) as well as compensation wetland areas
 - 11 fish biomass sites along creek; 2 reference sites (external)
 - 19 benthic invertebrate sites

 7 temperature loggers in creek; 2 reference sites (external)

Terrestrial Ecology (1)

- Who does the monitoring?
 - Dougan and Associates
- Why do we monitor?
 - Focus is upon three main requirements:
 - DFO Conditions of Approval (plantings along creek and wetlands)
 - Landscape Management Plan (habitat restoration and enhancement)
 - IADP Ecosystem Monitoring (ecosystem level diversity and function)
- What do we monitor?
 - Vegetation (flora)
 - Animal species (fauna)

27

4. Monitoring Components

Terrestrial Ecology (2)

- How do we monitor and when?
 - Annual inspections of vegetation transects along the creek, combined with quadrats along the transects (quantitative and qualitative)
 - Annual inspections of additional vegetation plots within the valley and around SWM facilities
 - Ecological Land Classification Mapping
 - Monitoring of breeding birds and amphibians, review of special studies by others (Turtles, Flying Squirrel)
 - 5-year timeframe for most tasks, 20 years for ecosystem monitoring

Terrestrial Ecology (3)

- Where do we monitor?
 - 38 transects along Red Hill Creek and connected channels
 - Typically 6 quadrats per transect (3 on each side)
 - 6 SWM Facilities and 2 wetland compensation areas
 - Typically 4 transects per area
 - 13 additional vegetation monitoring plots
 - Various breeding bird and amphibian monitoring stations

29

5. Reporting and Deliverables

- 5 Annual Reports (2008 2012 inclusive)
 - All completed; 2012 report undergoing some minor revisions
- Supplemental 2013 report (Water Quality only)
 - To be issued to the City for review within the next month
- 5-Year Executive Summary (Pending)
 - To be completed early April 2014
- Operations and Maintenance Manual (Pending)
 - To be completed once Executive Summary is completed (late Spring)

5. Reporting and Deliverables

- 5-Year Executive Summary
 - Intended as a concise summary of previous annual reports
 - Major findings
 - Trending and Analysis
 - Lessons learned what worked? What didn't? How can findings be applied to other City projects?
 - How does the system perform as a whole? What changes (if any) are recommended
 - What are the future monitoring and maintenance requirements going forward (both scoped and long-term)?
- Results of this document will be presented at a subsequent JSB meeting in the 2nd quarter of 2014 by all sub-disciplines

31

5. Reporting and Deliverables

- Operations and Maintenance Manual
 - How do SWM facilities operate?
 - What should SWM facility inspections look for what are the typical problems encountered?
 - What are the typical solutions\repair works to these issues?
 - Similar approach for the creek as well

